Monday, April 5, 2010

Conduction

Conduction is the transfer of heat by direct contact of particles of matter. The transfer of energy could be primarily by elastic impact as in fluids or by free electron diffusion as predominant in metals or phonon vibration as predominant in insulators. In other words, heat is transferred by conduction when adjacent atoms vibrate against one another, or as electrons move from one atom to another. Conduction is greater in solids, where a network of relatively fixed spacial relationships between atoms helps to transfer energy between them by vibration.

Heat conduction is directly analogous to diffusion of particles into a fluid, in the situation where there are no fluid currents. This type of heat diffusion differs from mass diffusion in behavior, only in as much as it can occur in solids, whereas mass diffusion is mostly limited to fluids.

Metals (e.g. copper, platinum, gold, iron, etc.) are usually the best conductors of thermal energy. This is due to the way that metals are chemically bonded: metallic bonds (as opposed to covalent or ionic bonds) have free-moving electrons which are able to transfer thermal energy rapidly through the metal.

As density decreases so does conduction. Therefore, fluids (and especially gases) are less conductive. This is due to the large distance between atoms in a gas: fewer collisions between atoms means less conduction. Conductivity of gases increases with temperature. Conductivity increases with increasing pressure from vacuum up to a critical point that the density of the gas is such that molecules of the gas may be expected to collide with each other before they transfer heat from one surface to another. After this point in density, conductivity increases only slightly with increasing pressure and density.

To quantify the ease with which a particular medium conducts, engineers employ the thermal conductivity, also known as the conductivity constant or conduction coefficient, k. In thermal conductivity k is defined as "the quantity of heat, Q, transmitted in time (t) through a thickness (L), in a direction normal to a surface of area (A), due to a temperature difference (ΔT) [...]." Thermal conductivity is a material property that is primarily dependent on the medium's phase, temperature, density, and molecular bonding.

A heat pipe is a passive device that is constructed in such a way that it acts as though it has extremely high thermal कांदुक्टिविटी

ATIQAH


0 Comments:

Post a Comment

Subscribe to Post Comments [Atom]

<< Home